DM8数据中心解决方案:达梦实时同步工具在线阅读
会员

DM8数据中心解决方案:达梦实时同步工具

徐飞等编著
开会员,本书免费读 >

计算机网络数据库9.8万字

更新时间:2023-11-23 19:21:05 最新章节:9.6.5 海南社保异构数据库容灾

立即阅读
加书架
下载
听书

书籍简介

达梦实时同步工具是数据库行业内数据实时同步的一个标杆。本书以达梦实时同步工具4.0为蓝本,介绍达梦数据库本地和异地容灾的解决方案,主要包括达梦实时同步工具的技术原理、特点、系统架构、配置和使用方法,以及日常运维和典型案例分析等。本书语言流畅、通俗易懂,并介绍了具体应用案例,是深入了解达梦数据中心解决方案的基础指南,具有较高的参考价值。
上架时间:2022-09-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

徐飞等编著
主页

最新上架

  • 会员
    这是一套数据指标体系全流程构建(从规划、框架设计、数据采集加工到应用)方法论与实践指南。它不仅深入浅出地分享了通用的数据指标体系构建策略,还通过多个行业实例展示了具体操作方法。书中从数据采集入手,借助BI工具Superset实践构建过程。本着“一切技术都是为业务服务的”这一宗旨,本书除了包含数据指标体系构建相关内容外,还结合统计学原理及Excel、Python等工具,深入剖析数据指标波动对业务的影
    李渝方计算机12.7万字
  • 会员
    本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。
    傅一行计算机13万字
  • 会员
    本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth
    王俊主编计算机12.3万字
  • 会员
    本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预
    翟世臣 张良均主编计算机13.6万字
  • 会员
    本书是一本介绍分布式数据库基础内容与应用的大数据专业类图书,力求培养读者对分布式数据库的应用技能。本书共11章,采用原理+代码实例+综合案例的编写形式,清晰明了地介绍分布式数据库的原理、基础应用、进阶应用及主流工具的使用方法、应用场景,以理实结合为编写要求,让读者能够轻松学习和掌握分布式数据库的内容。本书可以作为高等院校计算机、网络技术等相关专业的教材,也可以作为数据库相关工作的从业人员的参考用书
    闭应洲 许桂秋 刘军主编计算机14万字
  • 会员
    本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。
    张平文 邱泽奇编著计算机14.5万字
  • 会员
    本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。
    袁昕编著计算机8.5万字
  • 会员
    本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例
    戴刚 张良均主编计算机10.4万字
  • 会员
    本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。
    熊熙 张雪莲编著计算机10.9万字