1.3 矢量微分算子
1. ▽算子
▽算子是一个微分算子,同时又是一个矢量算子,具有微分运算和矢量运算的双重性质。一方面它作为微分算子对它作用的函数求导,另一方面这种运算又必须适合矢量运算法则。本节来说明 ▽算子的运算性质,并给出一些常用公式。必须指出,虽然作为例子用直角坐标系给出了一些公式的证明,但这些公式的正确性与坐标系选择无关。
我们已经给出 ▽算子表示标量场的梯度、矢量场的散度和旋度,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739416177-lkeqzo19hZyButcbE0O7fxdKlrvoK0Rg-0-5292e680694f9e9631a5db92d9219b64)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739416177-OTief6efzDAmikNfxe518W4vH36aHDSQ-0-774b153828b385f87f39b9481004a6e3)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0006.jpg?sign=1739416177-HKzcol0j7yqX3A6FAcxCEqHB93tDyag9-0-a6ffc5253fbc47bbf44b16d60a473d07)
▽算子还可以构成一个纯标量算子,即
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739416177-z6x4llFYYZFxxyhF4oALp2rdL8DcyNF4-0-fe1d847acc4033e33d23a9a90f4a5452)
称为Laplace算子,其可作用在标量函数和矢量函数上。
2. ▽算子常见计算公式
(1)设u是标量场,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0016_0008.jpg?sign=1739416177-44uOMmB2Q5wo2DpHrWgwBHMHlZO8jvuf-0-63cd0cc645fd2fd2f79315e5b2ca0932)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0001.jpg?sign=1739416177-s4dPDcQfovIWYOotTM5Pq5aH7bTpqjh6-0-9b43913a6927bec7c801a1970f038372)
(2)设u和v是标量,A和B是矢量,则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0002.jpg?sign=1739416177-ddTAe8btTPDXKs3I4IbOGMHTKNV7KgMq-0-99a1712b264734002755a17344c2f12f)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0003.jpg?sign=1739416177-zKrPhjv7hp9pbl7ZMvUiXb2xNBLGwB7V-0-e153e0f9c27479d37d2b501b16651d5d)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0004.jpg?sign=1739416177-9cCSSeBVFAYvbDwK0uzkkBaCf0yO4gX0-0-6c373bf955300f0a36053ae82a7b47fe)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0005.jpg?sign=1739416177-WUdNGHc8KRP8wn4FNqMFviAXTMvSIXpZ-0-efe6fb34e342024e583ba374667caac6)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0006.jpg?sign=1739416177-zh78XeRKdxCTRyzCHHgeZvNaGRpP6yau-0-148a031076d1794f8dd49c7b0b34d9c2)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0007.jpg?sign=1739416177-vg1IfIHm5JiVmF5GBoq8pneRZsGulUB2-0-de6a7ae854388fce5ae9394e4f98b624)
(3)关于 ▽的二级微分运算为
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0008.jpg?sign=1739416177-hEj9cS6TA7CowO4ry1N8Hwr5oJLacKeC-0-31041ffd4864ca2708d02ff6400fa1f9)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0009.jpg?sign=1739416177-tpRkIx36A9jsuKqiBiJI7IsNylMo33i6-0-6df01a16973e557b46bdda2fc4b81163)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0010.jpg?sign=1739416177-9LmEy9DKuVdSJUZIqltbo1ZkoDJ7Qby6-0-8d8c9de7f9561110fa0540377739c0a0)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0011.jpg?sign=1739416177-Xsq6kOUYeSucqZ0xdfPjvIrzSJqVpOVX-0-b1f6a4d071e808b273e9101d941a2246)
3. 关于场源的一些常用结论
设有场点为r=exx+eyy+ezz,源点为r′=exx′+eyy′+ezz′,且记
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0012.jpg?sign=1739416177-4ViqSJW7OEQkRhBFO2utFqrIAXThryqP-0-140648750b8c6104cda9bb59fad2edd4)
则有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0013.jpg?sign=1739416177-hVliaOmeZ7Uxu6gLYLRpG2Vz9ENTySAw-0-a64fd5ec0c358e4f859790c67f303fcf)
同时有
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0017_0014.jpg?sign=1739416177-I1Ns8w2nlN5Ynu6hXYUPov3mM5NqkxlF-0-79a086faaf6f5bb84a0bfc75debb1948)
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739416177-xsslTuVCGg5Yxh6YRGJ4N4NXYzUhjHs0-0-6c577fe2ffbbd68e42e8639b246d81c5)
4. 高斯定理和斯托克斯定理
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739416177-OQTOrejVx76k6LTeVGGWnS0aHyIfrs2z-0-37f33ad5726aa489ba782ac314a630d5)
【例1-4】 计算下列各式的值,其中C为常矢量。
(1)▽·[(C·r)r];(2)▽ ×[(C·r)r];(3)C· ▽ × 。
解:(1)▽·[(C·r)r]= ▽[(C·r)]·r+(C·r)(▽·r)=C·r+3C·r=4C·r
(2)▽ ×[(C·r)r]= ▽[(C·r)]× r+(C·r)(▽ × r)=C × r
![](https://epubservercos.yuewen.com/6543C4/3590305504819001/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739416177-pvskGMHDJQY4UTyhXMfgeTZbAwXbS1XH-0-dabdd9680f94f042cd78cdf7dfc4b7fd)
【例1-5】 求 ▽2 eiK·r,其中K为常矢量。
解:由
▽eiK· r=eiK· r ▽(iK·r)=iKeiK· r
而
▽2eiK· r= ▽· ▽eiK· r= ▽·(iKeiK· r)= ▽eiK· r·iK= - |K|2eiK· r