- 电子商务理论与实践:SCM ERP CRM DW USE B2C B2B B2M M2M和C2C举例
- 陈华
- 839字
- 2020-07-09 17:14:39
2.4 投入产出模型的三级分解协调预测算法
2.4.1 问题的提出
根据上节,投入产出模型的优化问题可以表述为
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739657098-JTIFVYflMEeFlnAqUIOLXAPyBc634ffp-0-321611c7fa1fd1db388595e859b242d5)
2.4.2 问题的求解
定义对偶函数φ(λ)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1739657098-KdoykfrKpYPzfpE7oc7IYGlcZ8dXbsgb-0-02e260b981f3f968c3b25b9d8dcb7909)
于是,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1739657098-sTznJXMk1zzd6Akanouf8AoZeAs7h7BX-0-a887c7fc0a2593d0b5a11944778fdfa8)
由于
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1739657098-GRvMuuOYO5xjvRGDN7xPnBBBguuo23AP-0-0614a532a2cc049fdbe5b78d13704a95)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0001.jpg?sign=1739657098-gdaRIWRDKbA3STgtoFVRP7tezIdARCQd-0-7048355ad3c5d122cace19ecc17de946)
及同理得出的
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0002.jpg?sign=1739657098-0PYK4uwXNvRQIkbjvUeLCfO79HNdWJnx-0-1d5a377c77e31f23784bd7c51793faca)
我们可以得到,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0003.jpg?sign=1739657098-EHQyPzkCzxKiE5GhltP6DyOvOMUDI0y2-0-f689a85d1d37fa7dde384f78b2760825)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0004.jpg?sign=1739657098-L0nEtXLBgwCypH7hFNZqM9fi7FU42BQw-0-8c079cdd10f60096b9ad802e89fa2e2d)
在第三级给定λi(k)=λ*i(k)的情况下,第二级求Li的最优。而第三级本身则是用关联变量的误差作梯度,用梯度法或共轭梯度法寻优,有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739657098-dqWVrc6IpmL4OFedRUYgdTpbjhJB6LNL-0-ab1ad3b2f8f5cd367b6d24c0e33c4769)
若把N年以后的产量X(k)(N+1≤k≤N+T)当作X(N)的线性函数,如X(k)=(1+b)k-NX(N),其中b代表增长率,即假设规划目标年以后若干年的产值都按照固定的百分比增加,则第二级只要给出在λ*i(k)下使第i个子系统(i=1, …, C)已达到最优时的Xi(k), Zi(k), k=0,1, …, N,即可反馈回第三级。
对第二级,把子系统的拉格朗日函数按时间下标分解成子子拉格朗日函数,这样就把一个泛函优化的问题变为参数优化问题,很容易在第一级求得显式解(梁循,2006)。具体做法是:
定义对偶函数
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739657098-NJHb0SZnZ1HyR2MkuIt3zFTSnL8HMu3G-0-bd359d8d639a27693f1f0c3d7662bce7)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739657098-pV0PQT1rbmsPXdwRNtNb68mW5cVTmDtr-0-3b29b2e77f6b561dea467df7b42e0a1b)
设λi(σ)=0, μi(σ)=0, Hτi(σ), Wτ, ij(σ)=0。当σ>N或σ<0,我们有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0003.jpg?sign=1739657098-hmbBwnXD25SoAlmwTFHMyc9KE0SfnhBl-0-0b7015e8bb4d396043287bc4850aed64)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0004.jpg?sign=1739657098-JUurssxSpKHlUPkY6la97uGQd4bhY5Se-0-c56addb6e540b6570fe2dcbcaed65965)
于是,每个子问题Li又可分解成N+1个独立的子子问题,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0005.jpg?sign=1739657098-RLR929EtWIxBdcr1ZY9diUyrHj1TwRMp-0-f5d05a10fbc7f81a21e27d076314af67)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0035_0006.jpg?sign=1739657098-kLv1TikCSRRjiyZ7do3m1zsO6NfeCmtf-0-83474b822f4897015a46054c2833b1f9)
在第二级给定μi(k)=μ*j(k), k=0,1, …, N的情况下,对第i个子系统,第一级求Li(k), Li(N)最优,而在第二级用梯度法或共轭梯度法寻优,有
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739657098-EbGOzMUCDFZqHa80ZpVkWUj7IFLqDlTd-0-85b741cd2e448f5596a03d29e054f23a)
在第二级第i个子系统的子子系统中求出Xi(k), Yi(k), Zi(k)(k=0,1, …, N)后,即可反馈回第二级。
由Li(k), Li(N),并注意X(k)=(1+b)k-NX(N),(N+1≤k≤N+T)可得,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739657098-dRtDR4Pg5xhkXhm1JiaKT8KmjBDVzVop-0-189e76e9c5ad508e07f153107a071088)
可得Zi(k), Ui(k), Xi(k), k=0,1, …, N。于是,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1739657098-BN1ZQqzZoTjfvkXprjASravTRdxIj1wq-0-88868576e6f4837d9c6d6426c404359b)
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739657098-AjjFz2GdimMIXpFzRg2weRInaNYrIS6c-0-d2fa0da2b18eb0301cf5d12f1e9c11f8)
其中,
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739657098-SfHjU1gKXZCEh3RjV5WYViMhxCq0fF6c-0-e7cf15986457b95296558a4c94ac2c9f)
在第三、二级中,新的协调变量由下式确定:
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739657098-ZaB8bNlEpLrAUwpoDy3yhkWAyQoK68J3-0-4c155b71532c0d0cbc421315e9664703)
其中,l=0,1, …为迭代次数,αli(k), α′li(k)为寻优步长。
若用梯度法,则
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739657098-Fy38C7SvHnDlT3PppNMQcZNn51FA8l8Y-0-3b3377e251ac4dbc427a24e2409c6b99)
若用共轭梯度法,则
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0037_0005.jpg?sign=1739657098-oRzzpcexUTtGpWDXmWzpgVcIwUrzxVBA-0-d4950a0ed409bf1997cb9093337675fa)
上述三级结构如图2-3所示(梁循,1990)。
![](https://epubservercos.yuewen.com/1ABA24/13173345705468606/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739657098-GGRw02pEiGhdx5pi9DvGdihf1TheNXtv-0-7f7b632e39f87e5d27f69fb81e6e964a)
图2-3 三级分解协调算法
算法在第一级就获得一个显式解,而第二、三级算法很简单,因而使整个计算变得十分简单。同时所需要的存储空间进一步大幅度缩小。本算法的另一优点就是用简单的办法处理不等式约束。
如果还有其他对i, k的加性可分等式约束,可以用同样方法处理。